A new approach to design an efficient micropost array for enhanced direct-current insulator-based dielectrophoretic trapping.

نویسندگان

  • Mahdi Mohammadi
  • Mohammad Javad Zare
  • Hojjat Madadi
  • Jordi Sellarès
  • Jasmina Casals-Terré
چکیده

Direct-current insulator-based dielectrophoresis (DC-iDEP) is a well-known technique that benefits from the electric field gradients generated by an array of insulating posts to separate or trap biological particles. The aim of this study is to provide a first geometrical relationship of the post array that independent of the particles and/or medium, maximizes the trapping. A novel figure of merit is proposed to maximize the particle trapping in the post array while minimizing the required voltage, with a similar footprint and channel thickness. Different post array models with the variation of transversal distance (10 to 60 μm), longitudinal distance (10 to 80 μm), and post radius (10 to 150 μm) were analyzed using COMSOL Multiphysics finite element software. The obtained results indicated that a post radius of 40 μm larger than the transversal distance between posts could enhance the trapping condition between 56 % (for a transversal distance of 10 μm) and 341 % (for a transversal distance of 60 μm). For the validation of the numerical results, several microchannels with embedded post arrays were manufactured in polydimethylsiloxane (PDMS) and the particle trapping patterns of 6-μm-diameter polystyrene particles were measured experimentally. The experiments confirm the same trends as pointed out by the numerical analysis. The results show that this new figure of merit and geometrical relationship can be used to reduce the required electric field to achieve effective particle trapping and, therefore, avoid the negative effects of Joule heating in cells or viable particles. The main advantage of these results is that they depend only on the geometry of the micropost array and are valid for trapping different particles suspended in different media. Graphical abstract Analysis to maximize the particle trapping in the post array while minimizing the required voltage. I. Microfluidic channel design and experimental setup II. Numerical and experimental results. III. Maximum trapping value.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water.

Insulator-based dielectrophoresis (iDEP) was utilized to separate and concentrate selectively mixtures of two species of live bacteria simultaneously. Four species of bacteria were studied: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis, B. cereus, and B. megaterium. Under an applied direct current (DC) electric field all the bacterial species exhibited negative diel...

متن کامل

Prediction of trapping zones in an insulator-based dielectrophoretic device.

A mathematical model is implemented to study the performance of an insulator-based dielectrophoretic device. The geometry of the device was captured in a computational model that solves Laplace equation within an array of cylindrical insulating structures. From the mathematical model it was possible to predict the location and magnitude of the zones of dielectrophoretic trapping of microparticl...

متن کامل

Electrokinetic Velocity Characterization of Microparticles in Glass Microchannels

Insulator-based dielectrophoresis (iDEP) is an efficient technique with great potential for miniaturization. It has been applied successfully for the manipulation and concentration of a wide array of particles, including bioparticles such as macromolecules and microorganisms. When iDEP is applied employing DC electric fields, other electrokinetic transport mechanisms are present: electrophoresi...

متن کامل

A Scalable Row/column-addressable Dielectrophoretic Cell-trapping Array

We present the first known implementation of a passive, scalable architecture for trapping, imaging, and sorting individual cells using a positive dielectrophoretic (p-DEP) trapping array. Our approach, which does not require on-chip CMOS electronics, incorporates unique “ring-dot” p-DEP trap geometries into an “active coverslip” array, enabling selection of individual cells from a trapped popu...

متن کامل

Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices.

In this work, the temperature effects due to Joule heating obtained by application of a direct current electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator-based dielectrophoresis. The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical and bioanalytical chemistry

دوره 408 19  شماره 

صفحات  -

تاریخ انتشار 2016